අධායන පොදු සහතික පනු (උසස් පෙළ) විහාගය, 2001 අගෝජතු கல்விப் பொதுத் தராதரப்பத்திர(உயர் தர)ப் பரீட்சை, 2001 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2001

රසායන විදහාව I

இரசாயனவியல் I

Chemistry I

 $oldsymbol{arphi}_{t}$ දෙකයි / $oldsymbol{Q}$ $oldsymbol{T}$ $oldsymbol{m}$ $oldsymbol{m}$ $oldsymbol{Q}$ $oldsymbol{T}$ $oldsymbol{m}$ $oldsymbol{m}$ $oldsymbol{m}$ $oldsymbol{T}$ $oldsymbol{m}$ $oldsymbol{$

Important:

This question paper consists of 08 pages.

Enter your Index Number in the space provided on the answer sheet.

Use of calculators is not allowed.

You should answer all the questions in this paper. For each question there are five responses of which one is correct. When you have selected the response which you consider to be the best answer to a qu mark your response on the answer sheet in accordance with the instructions given therein.

> Universal gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Avogadro Constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

- A, B and C are three non transition elements in the same period of the Periodic Table.
 - A is a nonmetal
 - B is a metal.

C shows properties of both metals and non-metals.

Which one of the following represents the order in which these three elements occur in the Periodic

- $(1) \quad \mathbf{A}, \quad \mathbf{C}, \quad \mathbf{B}$
- (2) **B**, **A**, **C**
- (3) **B**, **C**, **A**
- (4) C, A, B
- (5) C, B, A

02

- X, Y and Z are three consecutive elements in the same period of the Periodic Table. Z is a gas under conditions. The first standard ionisation enthalpy (ΔH_I°) of these elements is in the order X < IThe electronic configuration of X is of the form
 - (1) $ns^2 np^1$
- (2) $ns^2 np^2$
- (3) ns² np³
- $(4) ns^2 np^4$
- (5) ns² np⁵
- Under the same conditions, which one of the following atoms will liberate the largest amount of energy it gains an electron?
 - (1) Na(g)
- Ar(g) (2)
- (3) Li(g)
- (4) N(g)
- (5) Mg(g)

The name of the compound

- is
- phosphoric(V) acid.
- phosphoric(III) acid.
- (3) phosphoric(I) acid.
- metaphosphoric(V) acid.
- hypophosphorous acid.
- Cobalt is present as Co3+ in a complex compound. A mole of this compound contains five moles of an and one mole of cobalt. Chlorine is the only other element present in this compound. The chemical for of this complex is
 - (1) $\left[\text{Co(NH}_3)_5 \text{Cl} \right] \text{Cl}_2$
- (2) $\left[\text{Co(NH}_3)_5 \text{Cl} \right]$
- Co(NH3)
- (4) $\left[\text{Co(NH}_3)_5 \text{Cl}_2 \right] \text{Cl}^{-1}$ (5) $\left[\text{Co(NH}_3)_5 \text{Cl} \right] \text{Cl}$

see pas

Find more at: chemistrysabras.weeply.com twitter: ChemistrySabras

6.	The II	JPAC name for	Fe(C	$N)_3(NH_3)_3] i$	S						
	(3)	tricyanotriamm triamminetricya triamminetricya	anoiron anoferra	(III) nte(II) /	(2) (4)	triamminet	ricyanofe	errate(III)			
7.,	Which	one of the follo	wing i	norganic salts	is mo	stly responsi	ble for t	he hygroso	copic natur	re of commo	n salt
•	(1)	CaCl ₂	(2)	$Ca(NO_3)_2$	(3)	$MgCl_2$	(4)	CaSO ₄		NaI	
8.	(1)	one of the foll steam, calcium potassium chlo water, hydroge carbon dioxide steam, sodium	oxide, pride, p en, sodi e, oxyge	, sodium, grap ropáne, ethano um chloride, en, chlorine, v	ohite ol, hy- diamo	drogen	a laborat	ory contain	ns only co	valent comp	ounds?
9.		one of the foll BeCl ₂	owing (2)			olar (i.e. pos CO		ero dipole H ₂ O		CHCl ₃	
	(1) (2) (3) (4)	der of molar so $Ca(OH)_2 > Ba$ $Ba(OH)_2 > Ca$ $Al(OH)_3 > Ma$ $Mg(OH)_2 > Ca$ $Ba(OH)_2 > Ca$	$(OH)_2$ $(OH)_2$ $(OH)_2$ $(OH)_2$ $(OH)_2$	> Al(OH) ₃ > > Mg(OH) ₂ > > Ca(OH) ₂ > > Ba(OH) ₂ >	Mg(C Al(C Ba(C Al(C	OH) ₂ . OH) ₃ . OH) ₂ . OH) ₃ .	Mg, Al	, Ca and	Ba is		
11.	(1) (4)	cts with H_2SO_4 is second product (so H_2 only. a mixture of I Deuterium)) libera	ited is/are	(2)	a mixture	-			D ₂ only.	
12.		monium salt un is liberated is n	_			-			_	the only proc	lucts.
<		_		NO ₃						CO ₃ ²⁻	
13.	(1)	12.044 × 10^{15} 6.022 × 10^{19}	in 0.02	240 g of the 1	(2)	otope is 12:044 × 1 6:022 × 10			(3)	12·044 × 10	021
14.	The ca	tion which will	(i) (ii)	a blue solutio no precipitate a yellow-brow	with	H2S in dilut	te HCl a				
	is (1)	Cr ³⁺	(2)	Ni ²⁺	(3)	Co ²⁺	(4)	Cu ²⁺	(5)	Mn ²⁺	
15.		one of the foll MgO	owing (2)			expected to NaF		highest l MgCl ₂		ergy? CaO	
16.		mber of moles of medium is	of KMn	O ₄ that is requ	ired t	o react comp	letely wi	th 1 mole	of iron(II)	oxalate (FeC	C ₂ O ₄).
	(1)	5	(2)	3	(3)	5/3	(4)	3/5	(5)	1/5	
17.	An aq	ueous solution	of K ₂ S	O ₄ .Cr ₂ (SO ₄) ₃ .1	2H ₂ O	contains 1	04 g dm	of Cr ³	tions. W	hat is the	SO_4^{2-}
		tration, in units					20.	601		· · · · · · · · · · · · · · · · · · ·	***************************************
		e atomic masse 0.01	s: H = (2)			= 32; K = 0.03		= 52) 0.04	(5)	0.05 [see page	three
			•	10	2						

18. A solution S was prepared by complete dissolution of pure CaCl₂ and pure Ca(OH)₂ in chemically properties (pH = 7.0) at 25°C. The concentration of each solute in S is 0.005 mol dm⁻³.

What is the pH of the solution S? (at 25°C, $K_w = 1 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$)

- (1) 2.0
- (2) 2.3
- (3) 7.0
- (4) 11.7
- (5) 12-0
- 19. Iodine is produced when 10·0 cm³ of a 0·010 mol dm⁻³ solution of K₂S₂O₂ is added to a solution con I⁻ ions according to the equation

$$S_2O_8^{2-} + 2 I^- \longrightarrow 2 SO_4^{2-} + I_2$$

The minimum volume of 0.015 mol dm⁻³ solution of Na₂S₂O₃ required to completely react with the so produced in cm³ is

(1) 5.0

22.

23.

ts.

ree

- (2) 6.7
- (3) 13.3
- (4) 20.0
- (5) 26.7
- 20. The constituent elements most likely to be present in a stainless steel are
 - (1) Pb, C, Cr, Ni.
- / (2) Fe, C, Cr, Ni.

(3) Fe, Cr, Ni,

(4) Fe, C, Si, Cu.

- (5) Fe, C, Cu, Zn.
- 21. Two argon gas atoms travelling at speeds of 7.0 m s⁻¹ and 6.0 m s⁻¹ respectively undergo a perfectly collision. Possible values for the speeds of the two atoms immediately after the collision are respectively
 - (1) $9.0 \text{ m s}^{-1} \text{ and } 2.0 \text{ m s}^{-1} \text{ A}$
- (2) $6.0 \text{ m s}^{-1} \text{ and } 5.0 \text{ m s}^{-1}$
- (3) 8·0 m s⁻¹ and 5·0 m s⁻¹
- (4) 6.5 m s^{-1} and 6.5 m s^{-1}
- (5) 8.0 m s⁻¹ and 3.0 m s⁻¹ χ
- The electrochemical system involving metals X and Y was up by a student and potential differences measured potential difference between electrodes ① and ② was 0% and the potential difference between electrodes ③ and ④

The potential difference between electrodes 1 and 1 she be

(1) 1.50 V.

0.75 V.

- (3) 3·00 V.
- (5) 2·25 V.
- (2) 0 V. (4) 0.75 V.

X Y X Aqueous salt solution

A student uses pairs of different metals L and M to prode electricity. A schematic diagram of the apparatus used is given

Which of the pairs of metals indicated in the table below she be used in order to produce initially an electron flow in direction indicated by the arrow?

1.0 mol dm-3 aqueous solution of L

1.0 mol dm⁻³ aqueous solution of M

[see page

	()				
24	The mean square speed $(\overline{c^2})$ of ideal gas m	nolecules (relative m	olecular mass = M	at temperature T is give	n
٠.	by the expression				
	$\overline{c^2} = \frac{3RT}{M} =$	mN	· i sy		
	The mean square speed $(\overline{c^2})$ in SI units $(n$	$n^2 s^{-2}$) at 227°C of	a diatomic ideal gas	s whose relative molecula	II
	mass is 50 is (1) 0.249 (2) 2.49×10^5	(3) 4.99×10^5	(4) 4.99×10^{2}	$(5) 2.49 \times 10^2$	
25.	The rate determining step in a certain real $2 \times X \longrightarrow Y$		d to be		
	When the concentration of X is 0.60 mold	lm ⁻³ , the rate of the	reaction is r mold	m ⁻³ s ⁻¹ . Therefore, wher	1
	the concentration of X is 0.12 mol dm^{-3} ,	the rate of the read	ction (in mol dm ⁻³		
	Which are of the fellowing will and the				
26. ≺	Which one of the following will conduct (1) copper wire (4) polyvinyl chloride	(2) solid NaCl (5) molten NaOl		(3) graphite	
27.	For the equilibrium in a gas system repre	sented by			
	2 P (g) +	$3 Q_2(g) \longrightarrow P_2$	$Q_6(g)$		
	what is the ratio of the equilibrium consta	ants $\binom{K_p}{K_c}$ at 10	00 K in units of m	101 ⁴ J ⁻⁴ ?	
	Assume ideal behaviour for the gas system	n.			
	(1) 4.8×10^{15} (2) 2.1×10^{-16}	(3) 1.2×10^{-2}	(4) 1.0	(5) 6.0×10^{-5}	
28.	Which of the following groups consists of (1) square metre, kelvin, gram (3) atmospheres, litres, pascal (5) kelvin, atmospheres, newton		•	bic metre	
29.	The density of an ideal gas is 1.20 kg m	3 at a pressure of 1	0^5 N m^{-2} and a tem	merature of 727°C	
	The relative molecular mass of the gas is			perature of 127 or	
	(1) 96 (2) 98	(3) 100	(4) 102	(5) 104	
30.	164.6 g of sodium amalgam on complete re		perates a gas whose	volume measured at STP	
	is 2.24 dm^3 . Assume that the gas behaves (Relative atomic masses: Na = 23; Hg				
	The mole fraction of Na in the amalgam				
	(1) 0.1 (2) 0.2	(3) 0.4	(4) 0.6	(5) 0.8	
31.	Solution P containing 0.55 mol dm ⁻³ of 1	NH ₄ OH and 0·10 mo	ol dm ⁻³ of NH ₄ Cl	has a pH value of 10.0.	
\vee	If 1.0 cm ³ of a 0.1 mol dm ⁻³ solution of Nac	OH was added to 1.0	dm ³ of the solution	P, the pH of the resulting	
	solution would be	(2) 10.0	(4) 10.5	(E) 11.0	
0	(1) 9.0 (2) 9.5	(3) 10-0	(4) 10.5	(5) 11.0	
(32)	Which one of the following statements is (1) In an acid base titration, the acid (2) The burette should always be filled (3) The solution remaining at the pipe titration flask.	should always be pld up to the zero ma	aced in the burette ark at the beginning	g of a titration.	
	(4) Some titrations do not require an (5) For the calculation, the average of the calculation of the same of the calculation of the same of the calculation of the same of the calculation of the calculati				
	two readings are widely different t	to each other.		f F	
		196		[see page five	
		F'JA'			

- An organic compound X of molecular formula C₈H₆O₇
 - (i) produces a gas on reaction with Na metal.
 - (ii) gives an orange coloured precipitate with Brady's reagent.
 - (iii) gives an aromatic dicarboxylic acid on strong oxidation.
 - (iv) does not produce a gas when mixed with aqueous Na₂CO₃.

The compound X is

(2)

COOH

40.

Which of the reaction schemes given below would be most suitable to carry out the above conversion?

$$\begin{array}{c|c} & & CH_3CH_2CI \\ \hline & AlCl_3 \end{array} \xrightarrow{conc. \ H_2SO_4} \xrightarrow{Br_2} \end{array}$$

$$\begin{array}{c|c}
\hline
\text{CH}_3\text{COCI} & \underline{\text{LiAIH}_4} & \underline{\text{conc. H}_2\text{SO}_4} & \underline{\text{Bf}_2} \\
\hline
\text{AlCl}_3 & \underline{\text{AlCl}_3} & \underline{\text{CH}_3\text{COCI}} & \underline{\text{LiAIH}_4} & \underline{\text{conc. H}_2\text{SO}_4} & \underline{\text{Bf}_2} \\
\hline
\end{array}$$

$$(3) \qquad \xrightarrow{CH_3COCl} \xrightarrow{Z_{\Omega}(Hg)/HCl} \xrightarrow{conc. H_2SO_4} \xrightarrow{Br_2}$$

$$(4) \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \xrightarrow{\text{H}_2\text{C}=\text{CH}_2} \xrightarrow{\text{Br}_2} \rightarrow$$

$$(5) \stackrel{\text{H}_2\text{C=CHBr}}{\longrightarrow} \underset{\text{NaNH}_2}{\longrightarrow} HBr$$

- Acetylene reacts with ammoniacal silver nitrate to give a precipitate whereas ethylene does not. Which of the following statements best explains this difference?

 - (1) The K_a of acetylene is lower than the K_a of ethylene. (2) The K_a of acetylene is higher than the K_a of ethylene.
 - (3) The carbon atoms in acetylene are sp² hybridized whereas those of ethylene are sp hybridized.
 - (4) Acetylene can form a monovalent ion whereas ethylene can only form a divalent ion.
 - (5) Ethylene is more soluble in aqueous ammonia than acetylene.
- '42. Which of the following polymers is most likely to produce HCN during combustion?
 - (1) polyisopropylene

(2) nylon

(3) polyvinyl chloride

(4) polyester

(5) polystyrene

[see page seven

Instructions for question No. 43 to 50:

For each of the questions 43 to 50, four responses (a), (b), (c) and (d) are given. One or more of these correct. Select the correct response/responses. In accordance with the instructions given on your answer mark

- (1) if only (a) and (b) are correct.
- (2) if only (b) and (c) are correct.
- (3) if only (c) and (d) are correct.
- (4) if only (d) and (a) are correct.
- if any other number or combination of responses is/are correct.

Summary of above Instructions						
(1)	(2)	(3)	(4)	(5)		
Only (a) and (b) correct	Only (b) and (c) correct	Only (c) and (d) correct	Only (d) and (a) correct	combination of responses correct		

- Which of the following get(s) deflected when moving across a magnetic field?
- (b) cathode rays (c) protons

- Which of the following statement(s) is/are true about the nitronium ion (NO_2^+) ?
 - (a) It is linear in shape.
- (b) There are only σ bonds in it.
- (c) It is angular in shape.
- (d) valence shell of N has less than 8 electrons.
- Which of the following compound(s) when dissolved in pure distilled water form solutions which will red litmus blue?
 - (a) LiF
- (b) CH₃COOLi
- (c) LiQl
- (d) Lino,
- The following reaction is used in submarines to generate O2 from CO2 in exhaled air.

$$4KO_2 + 2CO_2 \longrightarrow 2K_2CO_3 + 3O_2$$

Which of the following statement(s) is/are correct in regard to this reaction?

- (a) no oxidation or reduction occurs

 ✓
- (b) carbon is oxidised <
- (c) oxygen is subjected to oxidation as well as reduction
- (d) the oxidation state changes only in O of KO,
- 47. When an aqueous 0.1 mol dm⁻³ Na₂SO₄ solution is electrolysed, 12.044 × 10²² H₂(g) molecules were produced O2(g) is the only other product formed. Given that the relative atomic mass of oxygen is 16.0, the other information required to calculate the mass of O2(g) produced is/are
 - (a) Faraday's Laws of electrolysis.

(b) Avogadro constant.

(c) Universal gas constant.

- (d) Faraday constant.
- 48. Which of the following industrial process(es) use(s) limestone in at least one of its steps in the production process?
 - (a) Manufacture of triple superphosphate
 - (b) Extraction of iron using a blast furnage.
 - (c) Solvay process for the manufacture of Na CO,
 - (d) Manufacture of cement
- Consider the following reaction:

$$R-C-Cl + R'NH_2 \longrightarrow R-C-NHR' + HCl$$

Which of the following statement(s) is/are true?

- (a) In this reaction, R'NH, acts as a nucleophile.
- (b) The reaction is an electrophilic substitution reaction on R-
- (c) In this reaction R—C—CI acts as a nucleophile.
- (d) The reaction is a nucleophilic substitution reaction on R-

[see page eight

even

$$H_2C^v = C^w(C^xH_3)C^y = C^zH$$

The superscripts v, w, x, y and z are used to label the C atoms. Which of the following statement(s) is/are true?

- (a) $C^{y}C^{w}C^{x}$ angle is approximately 120°.
- (b) All the C atoms of this molecule lie on the same plane,
- (c) All the H atoms of this molecule lie on the same plane
- (d) The carbon atoms C^v, C^w, C^y and C^z lie on a straight line.

• Instructions for questions No. 51 to 60:

In questions No. 51 to 60, two statements are given in respect of each question. From the Table given below, select the response out of the responses (1), (2), (3), (4) and (5) that best fits the two statements given for each of the questions and mark appropriately on your answer sheet.

Response	First Statement	Second Statement				
(1)	True	True, and correctly explains the first statement.				
(2)	True	True, but does not explain the first statement correctly.				
(3)	True	False				
(4)	False	True				
(5)	False	False				

	First Statement	Second Statement
51.	Reaction of aniline with aqueous nitrous acid at 20°C produces phenol, whereas reaction of ethylamine with aqueous nitrous acid at 20°C produces ethanol.	Benzenediazonium chloride is more stable than ethanediazonium chloride.
52.	CH ₃ CONH ₂ is a stronger base than CH ₃ NH ₂ .	The lone pair electrons of the N atom in CH_3CONH_2 are delocalized due to the interaction with the π -electrons of the carbonyl group.
53. 3	The equilibrium $N_2(g) + 3 H_2(g) 2 NH_3(g)$ can be shifted to the right at constant temperature by increasing the partial pressures of N_2 and H_2 .	According to the equation $pV = \frac{1}{3} m N c^2$, the average kinetic energy of ideal gas molecules can be increased by increasing the pressure of the gas at constant temperature.
54.	Coagulation of natural rubber latex is promoted by dilute acids but retarded by bases such as ammonia.	In natural rubber latex, the rubber particle is enclosed by a protein layer, which has a negative charge.
55. 4	The density of a gas at a given temperature is always directly proportional to its molar mass.	At the same temperature and pressure, the volume of a gas per molecule takes approximately the same value for different gases.
56.	Cu(I) is more stable than $Cu(II)$ in aqueous solution.	The electronic configuration of Cu(I) is of the form 3d ¹⁰ 4s ⁰ while that of Cu(II) is of the form 3d ⁹ 4s ⁰ .
57.	Aqueous solutions of compounds containing a d-block element are always coloured.	Ions formed by a d-block element always have a partially filled d level.
58. X	MgCl ₂ (aq) gives a precipitate of Mg(OH) ₂ with excess NH ₄ OH but NiCl ₂ (aq) does not give a permanent precipitate of Ni(OH) ₂ with excess NH ₄ OH.	Ni ²⁺ forms a water soluble armmine complex with excess NH ₄ OH but Mg ²⁺ does not do so.
5 9.	Both sucrose $(C_{12}H_{22}O_{11})$ and KI readily dissolve in H_2O .	H ₂ O forms strong hydrogen bonds with both sucrose (C ₁₂ H ₂₂ O ₁₁) and KI.
60. */	Methyl orange (pH range $3 \cdot 1 - 4 \cdot 4$) gives the correct end point for the titration of 1×10^{-3} mol dm ⁻³ solution of NaOH with 1×10^{-3} mol dm ⁻³ solution of HCl.	For the titration of 0·1 mol dm ⁻³ solution of NaOH with 0·1 mol dm ⁻³ solution of HCl, any acid-base indicator can be used.

Find More at: chemistrys twitter: ChemistrySabras